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ABSTRACT: Organic—inorganic hybrid lead perovskites have made
rapid progress in photovoltaic fields. However, the toxicity and poor
long-term stability of these materials still limit their further
commercial application. Herein, we proposed a system of lead-free
mixed-anion perovskites in which a chalcogen element is
incorporated into the perovskite octahedrons to improve the system
stability. We performed first-principles calculations of the band gaps
of 192 lead-free mixed-anion perovskites belonging to the class of
ABX'X”, where A = Cs*, CH;NHZ, and HC(NH,);; B = Ga**, In**,
Sb*', and Bi*"; X' = O*7, §*7, Se?”, and Te*", and X" = F~, CI, Br,
and I". The band gap shows a linear relationship with the average
anion electronegativity. The contribution of anions to the band-edge
states is related to electron affinity and structure parameters.
Considering multiple factors forming perovskites, we screened out

e
C&e% CsInOBr,: 1.30eV

high efficieny stable

Halide perovskite Oxide perovskite

a promising candidate, CsInOBr,, with a suitable band gap (1.3 V) for application in photovoltaics.

B INTRODUCTION

During recent decades, three-dimensional (3D) lead halide
perovskites have received enormous attention in solar cells due
to their outstanding photovoltaic performance with a new
exciting record power conversion efficiency of 25.2%.'”°
Although this tremendous success makes perovskite candidates
next-generation solar cells, the inherent toxicity of lead (Pb)
and the poor long-term stability remain major obstacles for
commercial applications.””"® The requirements for commercial
materials to have high performance and be environmentally
friendly motivate the exploration of stable, lead-free perov-
skites.

It is known that high electronic dimensionality resulting
from the corner-shared connection of octahedral halide units
contributes to the superior photovoltaic properties of 3D lead
perovskites."” To maintain high electronic dimensionality, on
the one hand, divalent elements, for example, Sn and Ge,
which belong to the same group in the periodic table as Pb,
have been considered primary alternatives. However, both of
them are easily oxidized, leading to poor performance for 3D
Sn-based and Ge-based perovskite solar cells.”’”>* On the
other hand, 3D double perovskites with the formula Cs,AgBiX
(X = Br, Cl) have been widely explored due to their good
stability. However, their band gap is not ideal for photovoltaic
applications.”””* Thus, searching alternatives for lead perov-
skites with ideal band gaps and good stability is still ongoing.

In this work, we focus on new emerging 3D mixed-anion
perovskites”>*® in which both chalcogen and halogen elements
contribute to the vertexes of the octahedral units. Incorpo-
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ration of chalcogen elements will help to improve the stability
issue caused by dissociating halide salts in the presence of
moisture.”>* By using computational simulation based on first
principles, we achieved high-throughput screening of mixed-
anion lead-free perovskites for photovoltaic applications. The
band gaps of 192 mixed-anion perovskites with a formula of
ABX'X", (Figure 1) were calculated by using the DFT-GLLB-
SC method, which has been shown to yield reasonable band
gaps at a minimal cost for perovskites.”’>” In this formula, A
represents Cs, MA (methylammonium, CH,;NH,), or FA
(formamidinium, H,NCHNH,); B represents Ga, In, Sb, or Bj;
X' represents O, S, Se, or Te; and X" represents F, Cl, Br, or L
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Figure 1. Crystal structure studied in this work. The organic
molecules are shown in the middle.
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The influence of chalcogen and halogen anions on band gaps
was systematically investigated in terms of different factors,
including electronegativity and density of states. Considering
the tolerance, octahedral factor, and stability, we screened out
a promising photovoltaic candidate, CsInOBr,, with a suitable
band gap of 1.30 eV.

B COMPUTATIONAL METHODS

In this study, all structural optimizations are based on density
functional theory (DFT) methods as performed in the Vienna
ab initio simulation package (VASP) by considering the
generalized gradient approximation (GGA) and the Perdew—
Burke—Ernzerhof (PBE) exchange-correlation functional.”>**
The projector-augmented wave method (PAW) is applied to
describe the interaction between the electrons and ions.” The
Monkhorst—Pack k point sampling used in geometry
optimization and electronic property calculation is 9 X 9 X 9
and 14 X 14 X 14. The cutoff energy for the plane wave
functions is set to 500 eV. As for the convergence criteria of
lattice relaxation and self-consistent calculations, the Hell-
mann—Feynman force is less than 0.01 eV/A, and the
threshold of the total energy change is set to 107 eV. The
initial crystal phase for mixed-anion perovskites is set to be
cubic. Spin—orbit coupling (SOC) is also calculated by using
VASP software since it has been verified to have a strong
relativistic correction on heavy atoms.***°

It is known that standard DFT calculations with a Kohn—
Sham band gap always seriously underestimate actual band
gaps.”” The general solutlon is the use of a hybrid functional or
many-body methods.”® Although these methods can give a
more accurate band gap value, the computation time is too
large, which is not appropriate for materials screening. We use
the GLLB-SC model potential method implemented in the
GPAW code™ to predict the band gaps of all the optimized
perovskite structures and calculate the band structure. In this
work, we use the GLLB-SC model potential method, which has
been shown to give reasonable results at a minimal cost to
predict the band gaps of the optimized perovskite struc-
tures.”*~** In this method, excess exchange-correlation energy
(A,) is considered based on the Kohn—Sham band gap to
obtain the quasiparticle band gap, which includes two parts:
the Kohn—Sham band gap Egap and exchange-correlation
energy A,. Besides, for accurate description of band gaps,
spin—orbit coupling (SOC) calculations are also considered in
our calculation as Agyc, which can be obtained from the VASP
calculation. The band structure of CsInOBr, is calculated with
the GLLB-SC functional implemented in GPAW.

E, =ES + A,

'gap Asoc

For the contribution of different anions on valence band
maximum, we calculate the projection of each band on the
orbitals of anions with VASP.

Ab initio molecular dynamics (AIMD) simulations were
performed to confirm thermal stability of the selected
materials, which is in supercells of 3 X 3 X 3 of a unit cell
The entire MD simulation lasted 1 ps with a step of 0.5 fs. The
temperature was controlled at 300 K with the canonical
ensemble, which is simulated using the algorithm of Nosé.

The formation energy was calculated by

1304

E SOlld(I )

tot

(CsInOBr) — E&M(Cs) —

E formation — tot tot

liquid
tot Enla%m (Brz)

— E Egas(oz) —
where Eg.ion iS the total energy of a supercell with N
CsInOBr, formula units and E,, is the total energy of the
constituent elements in their solid or gas forms. Spin
polarization was considered for the calculation of O, gas and
Br, liquid.
The decomposition energy was calculated by considering the
following deposition reactions

CsInOBr, — CsBr + 1/2 O, + InBr (1)
CsInOBr, — 1/6 (3Cs,O + In,0, + 4InBr,) (2)
CsInOBr, — CsBr + 1/3 In,0; + 1/3 InBr, (3)

Hence, the decomposition energy was calculated as follows
[E. (CsBr) + 1/2 E,, (O,) + E,,

Edecomposition =

(InBr)] — E,,, (CsInOBr,)

= 1/6 [3Etot (CSZO) + Etot (IHZOS) + 4Etot

(InBy,)]

Edecomposition

— E,,, (CsInOBg,)

= 1/3 [3E,, (CsBr) + E, (In,0;) + E,,

(InBgy)] —

Edecomposition

E, (CsInOBr,)

B RESULTS AND DISCUSSION

Band gap is the most important parameter that determines the
performance of photovoltaic materials.”® Accordingly, we first
calculated the band gaps of 192 lead-free perovskites. To
maintain the network of halide octahedrons, 1/3 of the
vertexes were replaced by chalcogen elements, resulting in a
formula of ABX'X”, where A is Cs*, MA*, or FA*; B is Ga™*,
In*, Sb3, or Bi**; X’ is 0>, §>7, Se*”, or Te*™; and X" is F~,
CI7, Br™, or I". As shown in Figure 2, the band gaps of these
selected perovskites span a range from 0 to approximately 7
eV. Most of the Cs-based compounds are metallic, with band
gaps approaching zero. Most of the MA-based perovskites and
some of the FA-based perovskites exhibit semiconductivity

Bandgap(eV)
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Br
MA9 | 7
F
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Figure 2. Calculated band gaps of 192 mixed-anion perovskites. Each
square represents a compound, and the color represents the
corresponding band gap. The larger letters on the left are A ions,
and the smaller letters are X” ions. The larger letters below are B ions,
and the smaller letters are X’ ions.

https://dx.doi.org/10.1021/acs.jpcc.9b10217
J. Phys. Chem. C 2020, 124, 1303—1308


https://pubs.acs.org/doi/10.1021/acs.jpcc.9b10217?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.9b10217?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.9b10217?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.9b10217?fig=fig2&ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://dx.doi.org/10.1021/acs.jpcc.9b10217?ref=pdf

The Journal of Physical Chemistry C pubs.acs.org/JPCC
8 6 4
7] MAGaXX", 4 |MAInXX", 8 masoxx~, ¢ {maBixx",
6 1 | v 5 ’3_
] 44 v ] o |
] v v
54 A v 2
1 A3 v 3 ~0 T
4 AT ] w ]
>3] A at ody vv 2 o 1
O A A | ¢ |
=5 ] a4 1 14 .
of ] .
< * 0
001 - A 0+ v 0+ ’“ 0
‘-O _l’l'l'l‘l‘['l'l'f"l'I'l‘I'l'l'l'l"f”|’|'|’I'I’['|'I'$'I'I'I'I'I'I'I'I'I'
§3 FAGaXX"; »  » {FAINXX", o® {FASHXX", * |FABiXX", °
m } > > 44 e 34
. > ] e ® | 24 9
2] > 3 0. 2 * ] o
1 g 2 1 * P 4 * *
14 >, o 1 *1
, > R o
] | o o ] ]
0 _¥p o Koo ikl - . CRNOIUINE th“w =~ o’ M CFAFC RO
Eoe 83885 | 88388y |F,e838850 ¥ AR5388y
LRSS SIS S S I L S S S I A W S I B S S L I W N
FRiTE s FRfey iy Fifesyiris Fifsy iy
Figure 3. Band gaps as a function of average electronegativity.
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Figure 4. Density of states (DOS) and projected density of states (PDOS) of MASbOX", and MASbTeX”,. The inset shows the DOS and PDOS

near the valence band maximum (VBM).

with a band gap of less than 5 eV. Although A cations do not
directly influence the band gap due to little contribution to the
electron orbital distribution at the band gap edge as discussed
in the following, they can modify the lattice constant, and the
band gap increases with an expansion of the lattice. For
example, as shown in Figure S1, for the class of ABOIL, (A =
Cs*, MA*, FA*; B = In**, Sb*, Bi**), the crystal volume follows
the order of Cs < FA < MA, and the band gap increases with
the increase in volume. Similar to the band gap trend for pure
halide perovskites, the band gap value also increases when X”
changes from I to Br, Cl, and F (from top to bottom in the
panel). In addition, the band gap decreases when the X’ part
changes from O to S, Se, and Te (from left to right in the
panel). To further understand the synergistic influence of the
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two different kinds of anions on the band gap, we calculated
the relationship between the gaps and the geometrical average
of the electronegativity of the constituent anions.

The Cs systems are not considered because most of their
band gaps are nearly zero. Figure 3 shows the influence of total
anion electronegativity on band gaps for the MA and FA
systems. The electronegativity values on the abscissa range
from small to large with labels of the corresponding anion
groups. It was found that for most mixed-anion perovskites,
especially MASbX'X",, there was a linear relationship between
the band gap and the average electronegativity. The band gap
increases with an increase in the electronegativity of anions,
which is consistent with the trend in halogen perovskites.”” It
is notable that the scattering of FAGaX'X", is completely

https://dx.doi.org/10.1021/acs.jpcc.9b10217
J. Phys. Chem. C 2020, 124, 1303—1308
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chaotic due to the destruction of the perovskite phase
structures (Figure S2).

Subsequently, we calculated the density of states (DOS) of a
series of MASbX'X", to more thoroughly understand the roles
of chalcogen and halogen elements. DOS analysis is helpful for
resolving the contribution of constituent elements on band-
edge states that determine the band gap of the system. Figure 4
shows the DOS and PDOS of MASbX'X”,. The results
demonstrate that the conduction band minimum (CBM) is
mainly contributed by Sb ions and that the valence band
maximum (VBM) is mainly contributed by anions. Further-
more, MA makes a slight contribution to the band-edge states,
corresponding to the role of A cations for lead perovskites. To
resolve the effect of anions, we focused on the contribution of
anions on the valence band maximum. For MASbTeX",, the
VBM is mainly contributed by the chalcogen element Te, and
halogen elements make slight contributions. However, for
MASDOI,, the result is the opposite, and the major
contribution of the VBM derives from I. The electron affinity
alignment of anions studied in this work is summarized in
Figure S3. The electron affinity follows the order of Te < I < Br
< Cl < O. In combination with the above PDOS analysis for
Te and O compounds, we found that anions with lower
electron affinity make greater contributions to the VBM.
Further support was provided by a correlation plot of the
contribution ratio of O and X” (X” = F, Cl, Br, and I) to the
VBM as a function of the electron affinity of halogen elements
for MASbOX”, (Figure S4a). The contribution of X" to the
CBM increases as the electron affinity decreases. Therefore, it
is reasonable to establish a correlation of decreasing electron
affinity of anions with increasing contributions to the VBM for
mixed-anion perovskites. In addition, for MASbX'X",, there
are two kinds of X” atoms that have different bond lengths
with Sb (Figure S4b). As shown in Figure 4, the contributions
of such X” atoms are different, suggesting that bond length is
also a parameter concerning the influence of anions on the
band-edge states.

Finally, we screened out the perovskite structure that meets
requirements from the 192 lead-free mixed-anion perovskites.
Although the theoretical optimal band gap for high photo-
voltaic energy conversion efficiency is 1.34 eV, the screening
criteria in this work were set to a range from 1.24 to 1.44 eV.
Furthermore, according to Goldschmidt’s rule, for a 3D
perovskite with a formula of ABXj;, the ionic radii of A, B, and
X need to meet the condition of the tolerance factor ¢

__(Ra+RY) _ Ry
= R (0.8 < t < 1.1) and the octahedral factor u = X

(0.414 < p < 0.7).2132

Table 1 summarizes the parameters of six perovskites with
suitable band gaps. However, only perovskite CsInOBr, can
meet all the above screening conditions. The calculated
electronic band structure (Figure SS) shows that CsInOBr,
is a direct band gap semiconductor with both the conduction
band minimum (CBM) and valence band maximum (VBM)
being located at the I' point. To evaluate whether the
candidate may theoretically form, we calculated the formation
energy of CsInOBr,, and the value was —1.32 eV/atom,
suggesting that CsInOBr, might be obtained from synthesis
experiments. Subsequently, we calculated the decomposition
energy by considering three possible decomposition pathways
as follows™

CsInOBr, — CsBr + 1/2 O, + InBr (4)

Table 1. Summary of the Related Parameters—Band Gap,
Tolerance Factor (t), and Octahedral Factor (i)—of the
Selected Lead-Free Perovskites

compound band gap (eV) t u
FABiSeF, 1.43 1.19 0.65
MABITeBr, 1.34 1.14 0.60
FAGaSBr, 1.41 1.52 0.48
FAGaSeF, 1.28 1.49 0.46
FAInSI, 1.41 1.35 0.57
FAInTel, 1.27 1.30 0.51
CsInOBr, 1.30 1.02 0.69
FAInOI, 1.43 1.43 0.69
CsInOBr, — 1/6 (3Cs,O + In,0, + 4InBr,) (5)
CsInOBr, — CsBr + 1/3 In,0; + 1/3 InBr (6)

The first two pathways show positive values of 0.26 and 0.23
eV/atom, respectively. Also, the third one exhibits a small
negative value of —0.08 eV/atom, indicating that CsInOBr, is
mildly metastable**** and may be synthesized experimentally
under equilibrium conditions. In addition, we performed ab
initio molecular dynamics (AIMD) simulations to evaluate the
thermal stability of CsInOBr,. As shown in Figure S6, the
evolutions of total energies are oscillating within a very narrow
range of 1 ps, indicating that CsInOBr, is thermally stable.

B CONCLUSIONS

We calculated 192 lead-free anion-mixed perovskite materials
and obtained a promising candidate CsInOBr, with a suitable
band gap of 1.30 eV for photovoltaic applications. For mixed-
anion perovskites, the band gap increased with an increase in
the electronegativity of the anions. Cations mainly contributed
to the CBM, and the contribution of anions to the VBM
depended on the electron affinity and the B—X bond lengths.
Our work provides a new direction to explore stable, lead-free
perovskite materials for photovoltaic applications.
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