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A new method to improve the resolution of a slightly non-parallel solid etalon is proposed. The method is aimed
to reduce the spectrum broadening caused by non-parallel surfaces; it contains a theoretical formula for adjusting
image distances, and an algorithm for processing the corresponding fringe patterns. Theoretical consideration,
computer simulation, experimental results, and application demonstration are given. The fringe patterns captured
by a CCD showed good agreement with the computer simulation, and the resolution of a A/10-wavefront-error
etalon was improved from 3.1 GHz to 0.51 GHz. In comparison with other methods, this new method is

convenient and economical.
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1. INTRODUCTION

A Fabry—Perot (F-P) etalon is an optical component made of a
transparent plate covered by two highly reflecting films. Due to
the ability to obtain a high-resolution spectrum, F-P etalons
have been used widely in laser technology, atmosphere optics,
and ocean optics [1-3]. For those applications, improving
the instrument resolution is an important topic. For example,
Brillouin lidar systems have been developed to sense the acoustic
speed, temperature, and viscosity of gas and liquid in recent
years, and using an F-P etalon with an intensified charge-
coupled device (ICCD) is a main choice to measure the
extremely small Brillouin frequency shift and linewidth [4-8].
In a Brillouin lidar system, the resolution of spectra has a large
effect on the calculation of frequency shifts and linewidths, so it
directly determines the precision of measurement [9,10].

The resolution of an etalon has been studied for decades.
The parameters to characterize the resolution of an etalon
are linewidth Av and finesse F, which can be defined as the
full width at half-maximum (FWHM) of the spectrum of a
single-frequency laser, and free spectrum range divided by
the linewidth, respectively [11]. According to the famous
Rayleigh criterion, the resolution of an etalon is limited to
its linewidth Av; hence, the theoretical resolution of an etalon
can be calculated by the interference theory. However, in prac-
tice, the finesse is usually much smaller than the theoretical
value, due to the spectrum broadening caused by the surface
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defects [12—14]. Among those defects, non-parallelism (or mis-
alignment for F-P interferometers) can cause a more serious
problem of finesse degradation, than other surface (roughness
and curvature) problems [15,16]. Moreover, non-parallelism
also causes peak position shift for a single-point source and peak
splitting for a multi-point source [17].

Although the mechanism of the spectrum broadening of a
non-parallel etalon was studied over decades ago, little attention
has been paid to solving this problem. Therefore, the aim of
this research was to develop a method that can reduce the fringe
broadening and improve the resolution. In this work, a new
method that can reduce the spectrum broadening without los-
ing much illuminance is developed, and it will be helpful for
Brillouin lidar applications.

2. THEORETICAL CONSIDERATIONS

A. Qualitative Analysis

Before the theoretical calculating, it is necessary to analyze dif-
ferent causes for the etalon fringe broadening, so that we can
focus on the non-parallelism and neglect other less important
causes. In the traditional theory [11], an F-P etalon is consid-
ered as two strictly parallel surfaces with high reflectivity. In that
case, laser transmitting through the etalon will form a series of
concentric rings on the focal plane, and the intensity distribu-
tion function is
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- 4Rsin(5/2)° (1)
(1-R)*

6 = 4rnh cos /2, (2)

where R is the reflectivity of the coating on the etalon, & is the
phase difference of two adjacent rays, 4 is the etalon thickness,
n is the etalon refractive index, 6 is the internal reflective angle,
and 4 is the wavelength. In this function, / reaches its maxi-
mum when & = 24z, and the FWHM is 2(1 - R)/+/R. If the
etalon surfaces are not perfectly parallel planes as traditional
theory describes, fringes on the focal plane should broaden.
Thus the broadening of the fringe can be considered as the con-
volution of three different parts: (a) broadening caused by the
non-monochromaticity of the laser; (b) broadening caused
by the transmission function Eq. (1), since R cannot reach
100%; (c) broadening caused by the etalon surface defects,
including the non-parallelism. The present paper focuses on
non-parallelism, and the other parts of broadening would be
dropped, so, in the following part three hypotheses were ap-
plied: (a) light transmitting into the etalon is single-frequency;
(b) light transmitting out of the etalon exists if and only if the
phase difference is equal to integral multiple of 27; (c) etalons
have no other defects except non-parallelism. These hypotheses
will be checked after experiments. Using the three hypotheses, a
qualitative image of a non-parallel etalon can be obtained.
Figure 1(a) shows the optical path of an ideal etalon and one
of its fringes in the xz plane, where 6 is the internal reflective
angle and €' is the angle of refraction in the air. In the xz plane,
rays transmitting out of the etalon can be divided into two
groups of parallel rays, and each group of rays focuses at a
single point on the focal plane. As comparison, the two groups
of output rays of a non-parallel etalon will not be strictly par-
allel, since the etalon thickness 4 is not a constant. As Eq. (2)
shows, to keep § = 2k constant, 6 will increase as the growing

of h:
0 o arccos(1/h), )

in which 6 means the inner reflective angle of the kth order of
the fringe pattern. Figure 1(b) shows the optical path of a
non-parallel etalon, the thickness of which decreases in the

6 o arccos (1/h)
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Fig. 1. (a) Optical path of a strictly parallel etalon. (b) Optical path
of a non-parallel etalon. (c) Calculation of image distance ». The ini-
tiating rays are monochromatic and come from all angles (from a
Lambertian radiator). The red and blue rays respectively converge
on the highest and lowest points of the same order of the fringe ring.
The blue group of rays in (c) was hidden for clarity.

x direction. As Fig. 1(b) shows, the blue group of rays diverge
while the red group of rays converge, so, the blue and red rays
will focus behind the focal plane and in front of the focal plane,
respectively.

This qualitative analysis shows the mechanism of fringe
broadening in the xz plane and reveals a probable way to solve
it—setting the image distance slightly longer or shorter than the
focus length. This also seems like a first-order aberration that
could be perfectly eliminated by tilting the CCD plane.
However, this analysis only works in the xz plane, which
contains the wedge angle of the etalon. Rays in the other
planes cannot be simply defined as “divergent” or “convergent.”
Therefore, it is not a one-dimensional image error that could be
perfectly solved.

B. Simplified Theory to Calculate the Image
Distance
As mentioned above, rays from a non-parallel etalon will
focus behind the focal plane and in front of the focal plane.
A quantitative equation to calculate that image distance will
be derived in this subsection.

Using paraxial approximation sin &% 60 and Snell’s law
n sin @ = sin 0’ and Eq. (2), 0’ can be expressed as a function

of h:

51\ 2
0 ~sin@ =nsin @ =nV1-cos?d=nyll- A .
4nh
(4)

Considering that 4 can be expressed as 4y + A/ for a non-
parallel etalon, and § = 2z, the expression of " will be
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Thus,

(5)

where d//dx is the slope of the thickness as a linear function of
x. The parameter d//dx can be also interpreted as the wedge
angle of etalon surfaces (in radians), so it characterizes the
non-parallelism of the etalon surfaces.

On the other hand, as Fig. 1(c) shows, the object distance #
has a relationship with A@’ and Ax:

(4 Az)(tan(0' + Af’) -tan ') = Ax
0'~0
= (u+ Az)A0' = Ax
w>Az

0= Ax/AO = dx/d0.  (6)

Using Egs. (5) and (6), the expression of image distance v can
be obtained as
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= f(1- f(d0'/dx))"!

-1

v=(f"-uh)!

dh k22
=fl1-f——— . (7)
dx 4h; nz—ilf(z;

As shown in Fig. 1(b), there are two focus points, and the
formula above only contains the red one. The image distance
of the blue one can be easily obtained by replacing d//dx with
-dh/dx. So the complete expression will be
-1
dh k222
v=f|1+f +— ——m . (8)
dx 4h [n* - IZZ;

This equation shows that the adjusted image distance v is
related with 4; therefore, only one fringe can be accurately
focused on the image plane. The fringes adjacent to the kth
order fringe may also be narrowed to some degree, but not
as much as the kth order.

C. Simulation

To close the gap between theories and experiments, a computer
model is needed to simulate the CCD images. This model
should be able to simulate the fringe patterns of a non-parallel
etalon at different image distances.

It is relatively difficult to do ray tracing in this situation, as the
number of rays is too large. Since rays emitted from each point of
etalon distribute in a wide solid angle and the CCD resolution
is 1600 x 1200 px (see Section 3), at least 1600 x 1200 rays
should be calculated for each sample point of the etalon. If
the etalon was divided into 100 sample points, the whole num-
ber of rays should be 1600 x 1200 x 100 = 1.92 x 108, which
will be too large to compute. Therefore, another way was chosen
to do this computer simulation.

To simplify the model, the camera lens, aperture, and etalon
are put so close that the distances between them could be
neglected in comparison with the lens focal length. Therefore,
the distance between the etalon and the focal plane is approx-
imately the focal length £, and the distance between the etalon
and image plane is approximately the object distance ». Suppose
that there is an arbitrary point A(x, y) on the etalon and inside
the aperture, and rays from A(x,y) are focused on the focal
plane. The radius of the fringe could be easily calculated by

= (0'f /pixel size). 9)
The fringe was drawn as a blue circle ©A" on the focal plane [see
Fig. 2(a)]. If the image plane is not the focal plane, usually the
image will be blurred and be difficult to calculate. To calculate
the pattern on the image plane, it could be supposed that point A
is an “absolute point” (area = 0), thus the fringe will be an
“absolute ring” ®A" (border width = 0). Obviously, ®A"" is
the projection of ©A' from point 4, so the center and the radius
of @A" are (x",y") = —% (x,7) and 7" = % respectively. In
the same way we can draw the fringe of another point B on the
etalon. It should be noticed that the radius of ©4" and ©®B’ may
have a small difference, because the etalon thickness 4 is not
constant. In this simulation, the thickness /# decreases in the

x direction; thus, 4, 8, 8, and 7" at B point will be larger than
at A point [see Egs. (3) and (9)].
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Fig. 2. (a) Schematic diagram of the computer model. The blue and
red circles are fringes generated from points 4 and B on the etalon,
respectively. The blue and red crosses mark the centers of correspond-
ing circles, and the black crosses mark the intersection of planes and
the optical axis. Note that the blue circle, the red circle, and the optical
axis are concentric on the focal plane. (b)—(d) Simulations of a non-
parallel etalon with 2 x 2, 3 x 3, and 15 x 15 sample points, respec-
tively. The upper images show simulation results, and the lower plots
show the location of the sample points arrays. The sample points out of
the aperture were neglected in the simulation. The brightness of the
simulation results was adjusted for a clear view.

As more points on the etalon were considered, the image
plane would include more circles [see Figs. 2(b) and 2(c)]
and would be more detailed and accurate. Among an N x NV
sample point array, the points in the 7th column and the jth row
were set at (x,y) calculated by

x=Qi-N-1)/Nxr, (10)

y=(2j-N-1)/Nxr, (11)

in which 7, is the radius of the aperture. Points out of the
aperture contour should be neglected during the simulation
[see Fig. 2(d) sample points array]. When N is large enough,
the simulation result would seem like a continuous ring pattern
with one side focused.

In this simulation, sample points were treated as “absolute
points.” Therefore, the fringe pattern from one single point
would be an “absolute ring” (border width = 0). Actually, to
create the final simulation image, the border width should have
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some value. In this simulation, the border line was chosen to be
a Gaussian function (border width = 3 px): Intensity =
exp(-#*), i = -1,0, 1, in which 7 is the pixels array subscript.

Since the thickness 4 of each sample point can be set indi-
vidually, this computer model can be used to simulate an etalon
with higher-order surface defects, not only non-parallelism.
This will be helpful in future studies.

3. EXPERIMENTS

A. Experimental Configuration

The theoretical results were tested using a seed-injected laser
(Spectra-Physics Quanta-Ray Pro 290), a solid etalon (CVI
ET-25.4-4.00-UV), and a CCD camera (PointGrey GRAS-
20S4M-C, 1/1.8"). As shown in Fig. 3, the laser pulse was
reflected to three diffusers which are made by fused silica,
and the diffused laser then transmitted into the solid etalon,
and was finally captured by a CCD camera. The CCD pixel
size is 4.4 x 4.4 pm and the maximum output image size
is 1600 x 1200 px.

The nominal linewidth of the laser is 0.003 cm™, the wave-
length is 532 nm, and the repetition rate is 30 Hz. Since the
maximum capture rate of the CCD at 1600 x 1200 px is only
7.5 Hz, a frequency divider was applied to divide the Q-switch
frequency and the camera trigger rate into 30/5(= 6)Hz.
A Stanford DG-645 digital delay system was applied to
synchronize the laser pulse and the CCD shutter.

The nominal transmitted wavefront error of the etalon was
A/10, where 4 = 633 nm, and the nominal wedge angle was
less than 1 arc sec. The etalon was mounted on a rotatable
mount, so it could be rotated to set the wedge angle on a
horizontal plane. The etalon was made by fused silica with
the refractive index of 1.461, and was covered with high
reflection coatings of 99.5% at 532 nm.

The lens system of the CCD camera was a 150 mm fixed-
focal lens (Pentax Takumar 1:4/150), and its focal ratio could
be set from F /22 to F /4. Using a common lens adapter, the
focal distance could adjust between 5.5 m to oo, but a negative
focal distance was essential in this experiment since the image
distance can be shorter than the focal length. Therefore, a
shorter lens adapter was specially designed to reach this negative
object distance. The whole camera system was set on a manual
translation stage that could move precisely up to 0.01 mm
along the x direction.

B. Measuring the Wedge Angle of the Etalon
The wedge angle d//dx (in radians) needed to be measured
before applying Eq. (8) to calculate the image distance.

) (3I6a£pﬁiu;d) [30 Hz demzl;)pher ——6Hz
MIITOT, laser
— output DG645
! Qswith 200 digital
: external trigger [€ Hs delay
i
i
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Fig. 3. Experimental configuration.
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Fig. 4. Interfered spectrum obtained by using the data-folding
method and the low-pass filtering method of Huang ez al, 2012
[18]. The CCD location was at x = 0, and the aperture number
was F/22.

Since the transmitted wavefront error is less than 4/10, the
conventional equal-thickness interference could hardly measure
the wedge angle precisely. The measuring method we chose was
to move the CCD system horizontally along the x axis to cap-
ture the fringes with different 4, and use Eq. (4) to calculate 4
and dh/dx. The step length of the CCD movement was
0.5 mm, and the aperture number was set as F/22.

The method to calculate thickness 4 from the fringe patterns
is demonstrated as below. Figure 4 shows a CCD image cap-
tured at the center of the etalon (x = 0), and the corresponding
spectrum calculated from the image. The data processing algo-
rithm to achieve such a spectrum included the determination of
the center, data folding, and low-pass denoising [18]. As shown,
the smallest fringe was located at » = 446.77 px, so the angle
of refraction would be 8" =r/f =446.77 x4.4 pm/150 mm.
On the other hand, the order of interference 4 could be calcu-
lated by setting 8’ = 0 and using a floor function, as

k= [2nhy/2] = 21954,
where 4 could be set as 4.00 mm exactly, because a small error

of # had little effect on the calculation of db/dx. Applying
Eq. (4), the thickness at the center of the etalon was

b= (2kn)3) (477:;1\/ - n-ze'Z) — 4 mm - 0.4972 nm.

Using the same method, a series of CCD images were captured
as different x locations, and the responding etalon thickness /4
was calculated. The data curve of 4 ~ x is shown in Fig. 5(a),

164 s(b)x=-6.5
Eil "
E ] (©x=-4 —linear fitting
€ ¢ .
€ 4]
< 29
' 04
w 24
g
c 6
= -104
12
14 (@X=55
5 4 2 o 2 4 &
(a) x-location (mm)

Fig. 5. (a) Linear fitting of the etalon thickness /4 as a function of
CCD location x. Each data marker was calculated from one CCD im-
age. Images of the six blue markers are shown as (b)—(g); noting that a
k 4 1th order of fringe appeared at the center of subfigure (b).
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where each marker on the data curve was calculated from one
CCD image. The method of least squares was applied to do
linear fitting, and the fitting result was

dh/dx = -2.296 nm/mm > = 0.9950, (12)

where dA/dx is the slope of / as a linear function of x and 7? is
the coefficient of determination. As the size of the etalon is
$25.4 mm, the transmitted wavefront error could be estimated
as 254 mmx2.296 nm/mm x (1.461 - 1) = 26.9 nm ~
0.04244, and the wedge angle is approximately 0.472 sec
arc. These values agreed with the nominal wavefront error
(<4/10) and the nominal wedge angle (<1 arc sec).

The CCD images shown in Figs. 5(b)—5(g) were captured at
x = -0.5, -4, - 1.5,0.5,3,5.5(mm), respectively. It is ob-
vious to note that the radius of the fringes decreased with
x value, and the (4 + 1)th fringe showed a little part at the
center of the first image. Another interesting phenomenon is
about the brightness of the fringes. Figures 5(d) and 5(e), which
were captured near the center of the etalon, showed a uniform
brightness distribution; Figs. 5(b) and 5(c), which were cap-
tured at the negative side of the x axis, showed a bright right
part and a dark left part; while Figs. 5(f) and 5(g), captured at
the positive side of the x axis, showed a bright left part and a
dark right part. This asymmetric fringe pattern made it difficult
to determine the fringe center location precisely. This problem
would be very serious if the image was captured far from the
etalon center, and that was why Fig. 5(a) only contained data
points between x = -6 and x = 6.

C. Obtaining a High-Resolution Spectrum
The wedge angle d/4/dx has been measured, so the adjusted
image distance could be derived and high-resolution CCD
images could be captured. Using Eqs. (12) and (8), the adjusted
image distance when £ = 21954 could be calculated as

-1

ds k22

’ 212
dx 4}18,/712—12/%

or 152.1 mm.

v=fl1x£7" = 147.9

In practice, it was difficult to directly measure the image
distance, because the precise location of the optical center of
the lens was unknown. The focal scale on the lens also did
not help on estimating the image distance, because the specially
designed lens adapter made the focus scale inaccurate. However,
a difference Az between two different image distances could be
measured precisely, by measuring the location of the lens front
edge twice. Therefore, if there were an image distance to be mea-
sured and a standard image distance f, then the image distance
to be measured could be expressed as f* + Az. The standard
image distance was selected to be the focal length f, because
it was easy to calibrate by imaging an object very far away.
To test the above calculation of the image distance, three
images were captured at image distances of f - 2.1 mm, f
and f + 2.1 mm, respectively, as Figs. 6(a)—6(c) show. The
corresponding computer simulations of those three CCD
images are shown in Figs. 6(d)—6(f). The aperture number
was F /11, and the image distances were 147.9, 150, and
152.1 mm, respectively. The experimental results showed very
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Fig. 6. (a)—(c) Images captured by the CCD camera. The aperture
number was £/11, and the image distances were f - 2.1 mm, f and
f + 2.1 mm, respectively. (d)—(f) The corresponding simulations.
The aperture number was also set as /11, and the image distances
were set as 147.9 mm, 150.0 mm, and 152.1 mm, respectively. The
sample points array was 15 x 15. The brightness of all these images was
increased for a clear display.

good agreement with the simulations. In comparison with the
uniform broadening in Fig. 6(b), the fringe patterns in the left
part of Fig. 6(a) and the right part of Fig. 6(c) were obviously
narrowed. But considering the negative slope of the etalon, if
v = f - 2.1 mm, the right part of the fringe—rather than the
left part—would be focused, as shown in Fig. 1(b). This con-
fusing fact could be explained by the image inverting process
inside the CCD software, because convex lenses produce in-
verted images. Another interesting fact was that the different
fringes broadened to different degrees. For example, the left
part of the smallest fringe in Fig. 6(a) was narrowed more than
the outside ones. This experimental fact supports the previous
conclusion that only one fringe can be accurately focused on
the image plane.

Having obtained the focused fringe, the next task would be
processing these images and determining the center of the
fringes. This step is crucial for the whole processing method,
as the precision of the center location would directly affect the
precision of the radius. However, because of the asymmetric
fringe broadening, the algorithm of Huang ez 4/ to determine
the centers of the fringes could not be directly applied [18]. A
modified algorithm made up of three steps was developed for
solving this trouble. The first step was to binarize, erode, and
dilate the CCD image, shown in Figs. 7(a)—7(c). Erosion could

Fig. 7. Processing algorithm to determine the center location of the
fringe. (a) Binarization of the original CCD gray-scale image, with a
ghost pattern between the first and the second fringe. (b) Erosion of
(a), noting that the ghost pattern nearly disappeared. (c) Dilation of
(b), noting that the edges became clear. (d) Recognition of edges and
the calculation of geometric centers and radii. Using the results, two
red circles were drawn on the image, showing a good coincidence with
the edges.
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erase the ghost patterns on the image, and dilation could make
the edges of a fringe clear. The second step was to recognize the
inner edge and the outer edge of the fringe and calculate their
centers and radii, using the method of Huang ez 4., as shown in
Fig. 7(d). The third step was to calculate the average location of
the two centers, and the average location would be used as the
center location of the whole fringe.

After determining the center of the fringe, the spectra data
could be obtained by data folding and denoising, which were
also described by Huang ez a/. [18]. Since the images captured
in this experiment were partly focused, the focused part of the
image, rather than the whole image, would be folded. For the
left-focused fringe [Fig. 6(a)], only pixels inside a central
angle ¢ = 2/7 rad would be folded. The angle was set toward
the left, and its center was set at the center of the fringe. For the
right-focused fringe [Fig. 6(c)], the angle was also set to restrict
the data-folding range, with its direction toward the right. For
the normal-focused fringe [Fig. 6(b)], all the pixels would be
folded, just as Huang et al did. These data-folding areas
and the corresponding denoised spectra were all shown in
Figs. 8(a)—8(c). The horizontal axes of the spectra were trans-
formed from the radius (px) to phase differences using Eq. (4).
This transformation could make the peaks uniformly distrib-
uted on the horizontal axis. The peaks were marked by
Roman numerals, and their corresponding data areas were also
marked by the same numeral, as shown in Fig. 8.

To evaluate the resolutions of these three spectra, the
FWHM of all the peaks were calculated and marked on
Fig. 8. Since only peak I (k~21954) was strictly focused
on the CCD plane, the FWHM of peak I was used to calculate
the finesse and the resolution. As shown in Fig. 8, the FWHM

0.9

0.8

0.7

0.6

Intensity (a.u.)

L @
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Table 1. Finesses and Resolutions Calculated from the
Three CCD Images

FWHM Resolution

(A8 /27) Finesse (GHz) (cm™)
Left-focused 0.02 50 0.51 0.017
Normal 0.12 8.3 3.1 0.10
Right-focused 0.02 50 0.51 0.017

of the left-focused (or right-focused, hereinafter both are
referred to as “partly focused”) peak I was 0.02 and the
FWHM of the normal peak I was 0.12. So it could be con-
cluded that in this experiment, the present method effectively
reduced the fringe broadening. The complete data about the
finesse and resolution (using Rayleigh criteria) were listed in

Table 1.

D. Discussions

Using the results in Table 1, the hypotheses made in
Section 2.A could be checked. The linewidth of the laser
was Al e = 0.003 cm™!, while the width of the normal spec-
trum was Afg; = 0.10 cm™' > AD,,. Therefore, the
broadening caused by the non-monochromaticity of the laser
could be neglected, and hypothesis (a) was valid in this experi-
ment. On the other hand, the FWHM caused by transmitting
function Eq. (1) was Adpeg = 2(1 - R)/~/R = 0.0100, where
R = 0.995, while the width of the normally focused image was
Adgypri = 0.12 x 27t = 0.75 > Adpeqg. Therefore, the broad-
ening caused by R < 100% could be neglected, so hypothesis
(b) was also valid. Finally, consider hypothesis (c). Although the

L) N ©

1

2

3 4 2 3 4

(Phase Difference / 2 ) — 21950

Fig. 8. (a) Spectrum of a left-focused fringe pattern. (b) Spectrum of a normal fringe pattern. (c) Spectrum of a right-focused fringe pattern. The
binarized CCD images above the spectra marked the data-folding area using an orange boundary line, and marked the corresponding data area of

each peak using Roman numerals and colors.
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broadening caused by non-parallelism was effectively reduced,
the residual linewidth of the partly focused spectrum was still
larger than A7y, and Adg.g. This could be due partly to the
fact that the broadening caused by non-parallelism was not
perfectly eliminated inside the whole data-folding area, but a
more important cause may be that there were other surface
defects except non-parallelism. Since the linewidth of the partly
focused spectrum was much less than the linewidth of the nor-
mal spectrum, the surface defects except non-parallelism could
be neglected, and hypothesis (c) was also valid. In conclusion,
the fringe broadening of the normal spectrum in this experi-
ment was mostly caused by non-parallelism, and all three
hypotheses were valid in this experiment.

The theoretical broadening function of a non-parallel etalon
has been derived by previous researchers; therefore, a compari-
son could be made between the previous work and the data in
Table 1. The normalized broadening function derived by
Gupta and Prasad [16] was

1(2) = \/1-[(A~4)/DF,

where D = /12/(2[([)71/7) ~ l%/(ZKPnla), and the non-
parallelism was expressed as 4g/K,. It should be noticed that
the non-parallelism 4y/K, was different from the transmitted
wavefront error. The non-parallelism was #AA, while the trans-
mitted wavefront error was (7 - 1)AA, as the refractive index
of air should be considered. The FWHM of this distribution
can be derived by setting /(1) = 1/2, then A would be
A =2y %+ +/3D/2. So the linewidth was

AL = /3D,

and

AL~ A 3D 3

A= =0 =Y .
g TR TR T 2K

> (13
Considering the aperture number 7/11, K, could be calcu-
lated as K, = 2/[(f/11)(dh/dx)n] = 11.64, and AP could
be calculated as A7 = ﬁ/(ZKpnh) = 0.1273 cm™!. In com-
parison with this theoretical prediction, the experimental result
was A7 = 0.10 cm™!, a little narrower than the prediction.
This difference might be attributed to the threshold of the
CCD response. There was another evidence which indicated
the threshold of the CCD response. This evidence was that
the peaks in the normal spectrum [Fig. 8(b)] had different
widths, rather than the same width as the theoretical prediction.
When there was a threshold on the CCD response curve, the
peak would become narrower if the illuminance decreased.
Equation (13) could also be used to estimate the design
requirement of the etalon with a given Ar. If another 4-mm
etalon was designed to reach a resolution of 0.017 cm™! (the
resolution of the partly focused spectra, shown in Table 1)
at f =150 mm and F/11, K, would be K, = V3/
(2A0nh) = 87. The corresponding transmitted wavefront er-
ror would be (532 nm/87)/1.461 x25.4 mm/(150 mm/11)x
(1.461-1) =3.6 nm=~1/176, where 1 = 632.8 nm. That
means that the transmitted wavefront error of an etalon should
be about 4/176, if it was designed to reach the same resolution
as the partly focused fringe pattern. Obviously, reducing the
wavefront error to 1/176 would be time consuming and
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expensive, while partly focusing could reach the same goal
conveniently and economically.

Another method to reduce the broadening is to reduce the
aperture. Knowing (f/F number) & A/K, and Eq. (13):
AD = it could be concluded that

2K,
A7 & 1/(F number). (14)

Using this equation, if AZ needs to be improved from 3.1 GHz
to 0.51 GHz, the aperture should be reduced from F/11 to
F/67. Therefore, the total illuminance on the CCD will drop
to (11/67)* ~#0.026 of the original value. Using the partly
focused method, only pixels inside ¢ = 2/7 Rad were folded;
therefore, the total effective illuminance will drop to
(2/7)/27 ~ 0.046 of the original value.

In comparison with total luminance, the signal-to-noise ra-
tio (§/N) is a better criterion to evaluate the ability to collect
weak signals. The noise on the CCD mainly includes readout
noise, thermal noise, and photons from the environment. Since
these kinds of noise are nearly the same on every CCD pixel, we
can compare the S/N of peak I. Using the partly focused tech-
nique, the total noise and total signal will drop to [(2/7) /27] of
the original value, and the linewidth of peak I was reduced from
3.1 GHz t0 0.51 GHz. Therefore, the (§//NV)' of peak I can be

calculated as

. [(2/7)/27]S x (3.1/0.51)
SN ="""1/7) 2N

= 6.1(S/N), (15)

in which § and V are the total signal and noise of a normal-
focused image, respectively. On the other hand, if the aperture
was limited from F/11 to F/67, the total signal will drop
(11/67)?, while the total noise will not change. Also consid-
ering the linewidth improvement, the (S//V)" of peak I can be

calculated as

Comparing (S/N)" and (S/N)", it can be concluded that the
signal-to-noise ratio of a partly focused image is much larger
than limiting the aperture.

= 0.16(S/N). (16)

E. Demo Application on Sulfur Hexafluoride
In this subsection, a partly focusing etalon spectrum was used
to measure the Brillouin frequency shift of sulfur hexafluoride,
a commonly used Brillouin medium in pulse compression [19].

SE4 gas was compressed in a medium cell up to 2.1 MPa,
and the pumping laser was focused into the cell using a f =
100 mm lens. The backward stimulated Brillouin scattering
(SBS) beam was split using a 1 /4 — A wave plate and a polarizing
beam splitter, then passed through the diffuser and the etalon,
and was captured by the camera. A quartz plate was inserted to
reflect a small amount of pumping laser into the etalon as a refer-
ence frequency. The whole configuration is shown in Fig. 9.
The aperture number was set as /11, while other parameters
were the same as the previous experiment. The trigger system
was also the same as the previous experiment.

Typical results are shown in Fig. 10. As shown, the pumping
frequency and the SBS frequency can be hardly resolved
in a normal fringe pattern, since the broadening caused by



8764 Vol. 57, No. 29 / 10 October 2018 / Applied Optics

Research Article

Lamp out | demultiplier
GoHztied [IOHEX T g

—>6 sz

laser DG645
Q-switch digital
output e e +200 deglay
M |
[ I [ [ 1
_Jl bda/4 I
Pumping a a quartz ccp
laser waveplate 1o lens SBS cell rigger
x mirror | /m £
diffuser etalon lens CCD
Translation
‘ Stage
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Fig. 10. Typical SBS spectra of SFg. (a) was from a right-focused

fringe pattern, while (b) was from a normal pattern. The inner plots
show the details of the highest peak (k= 21954). Laser peaks and

Brillouin peaks were resolved from the double-Gaussian fitting results.

non-parallelism. However, in a right-focused fringe pattern,
these two frequencies can be easily resolved. The non-linear
least-square method was used to fit the data curve, and the fit-
ting result is Av = 0.438 GHz. Knowing the wavelength 1 =
532 nm and the refractive index » = 1.02 [20], acoustic speed
of sulfur hexafluoride can be calculated as v = 54 = 114 m/s.

The CCD camera had captured 200 images of sulfur hexafluor-
ide, and the mean result is

v=1184+2 m/s. (17)

This value shows good agreement with the previous result of

113 + 6 m/s [21].

4. CONCLUSION

In this study, a new method that can improve the resolution of a
non-parallel etalon was developed. The method could reduce
the fringe broadening caused by non-parallelism. The complete
study contained three main points. The first point was deriving
a theory to calculate the broadening of a non-parallel etalon at
different image distances. Then the wedge angle of the etalon
was precisely measured, and the adjusted image distances were
calculated. Finally, CCD images were captured at the adjusted
image distances, and the captured images were processed to
obtain the spectrum. The images and the computer simulation
show good agreement, and the resolution of this etalon was
effectively improved. In discussions, it was argued that in com-
parison with improving the etalon or limiting the aperture, this
method is more effective, convenient, and economical. An
application example was also demonstrated to show the
improvement of the etalon resolution.

This method should be useful for most solid etalons,
because non-parallelism is the first-order surface error, which
is usually larger than other surface defects. However, for some
etalons, the main error of which is a second- or higher-order
error, this processing method may have a very limited effect.
Therefore, future studies should be focused on reducing the
broadening caused by high-order surface defects.
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