SYNTHESIS OF INORGANIC MATERIALS AND NANOMATERIALS

Pr. Charles Kappenstein

LACCO, Laboratoire de Catalyse en Chimie Organique, Poitiers, France

IV - FORMATION OF SOLIDS FROM SOLUTIONS 1) Glass

- a) The structural theory of glass formation
 - b) Crystallization versus glass formation
 - c) Glass melting
 - d) Metallic glass
 - e) Composition of glasses
- 2) Precipitation

3) Biomaterials

1) Glass a) The structural theory of glass formation

Difference between crystalline and amorphous silica

Figure 4-2. Schematic structure of crystalline (left) and amorphous silica (right). In the crystalline forms of silica the $[SiO_4]$ tetrahedra (the silicon atoms are located in the center of the tetrahedra, and the oxygen atoms at the vertices) are regularly arranged. There is no long-range order in the amorphous form.

1) Glass a) The structural theory of glass formation

Difference between crystalline and amorphous silica

Role of boron \rightarrow borate glass

From planar geometry to tetrahedral geometry

2 $[BO_3]^{3-} + O^{2-} \rightarrow [O_3B-O-BO_3]^{8-}$

higher degree of crosslinking

- → preserve the glass state
- \rightarrow reduce dilatation effect \rightarrow no breaking by heating

- a) The structural theory of glass formation
- b) Crystallization versus glass formation
 - c) Glass melting
 - d) Metallic glass
 - e) Composition of glasses
- 2) Precipitation
- 3) Biomaterials

1) Glass b) Crystallization versus glass formation

Crystallization Glass formation Nucleation rate:

V

Crystallization → nucleation-growth process

 \rightarrow no nucleation, activation energy E_a too high

$$\mathbf{v} = \mathbf{A} \exp \left(\frac{\Delta \mathbf{G}_{\mathrm{N}} + \Delta \mathbf{G}_{\mathrm{D}}}{\mathbf{k} \mathbf{T}}\right)$$

= N(nuclei) V⁻¹ s⁻¹

 ΔG_{N} = free (or Gibbs) energy change when a nucleus is formed

 ΔG_D = kinetic barrier for diffusion across the liquid-nucleus interface

1) How to estimate the term ΔG_N ? Assumption: spherical nuclei of radius r

 ΔG_N = volume term V + surface term S

V related to the change in free energy for liquid – crystal transition

→ negative because $G_{crystal} < G_{liquid}$ $\Delta_v G = G_{liquid} - G_{crystal}$ (J m⁻³) $V = -(4/3) \pi r^3 \Delta_v G$

S related to the formation of a solid-liquid interface

 \rightarrow positive because energy is needed to create an interface $S = 4 - r^2 r$

S = 4 π r² γ_{SL} γ_{SL} interfacial energy (J m⁻²)

 $\Delta G_{\rm N} = - (4/3) \pi r^3 \Delta_{\rm v} G + 4 \pi r^2 \gamma_{\rm SL}$

1) Glass b) Crystallization versus glass formation

$$\Delta G_{\rm N}$$
 = - (4/3) $\pi \ {
m r}^3 \ \Delta_{\rm v} {
m G}$ + 4 $\pi \ {
m r}^2 \ \gamma_{\rm SI}$

→ see the plot For low values of $r \rightarrow \Delta G_N > 0$

→ the nuclei will melt or dissolve

If few nuclei survive (statistical events) they can growth $\Rightarrow \Delta G_N < 0$ formation of stable nuclei, r increase

How can we determine the critical radius r^* A the maximum, we have $\partial \Delta G_N / \partial r = 0$ $0 = -4 \pi r^2 \Delta_v G + 8 \pi r \gamma_{SL}$ \Rightarrow $r^* = 2 \gamma_{SL} / \Delta_v G$ Magnitude of r^* ? When $\Delta T = T_m$ -T is low $\Rightarrow \Delta_v G$ is low \Rightarrow r^* is large \Rightarrow The probability for a nucleus to survive is very low When $\Delta T = T_m$ -T is large $\Rightarrow \Delta_v G$ increases \Rightarrow r^* decreases $\Rightarrow \Delta G^*$ decreases \Rightarrow probability of formation of nuclei becomes significant \Rightarrow nucleation rate \uparrow

1) Glass b) Crystallization versus glass formation

Crystallization Glass formation Nucleation rate:

V

 \rightarrow no nucleation, activation energy E_a too high

$$\mathbf{v} = \mathbf{A} \exp \left(\frac{\Delta \mathbf{G}_{\mathrm{N}} + \Delta \mathbf{G}_{\mathrm{D}}}{\mathbf{k} \mathbf{T}}\right)$$

 ΔG_{N} = free (or Gibbs) energy change when a nucleus is formed

 ΔG_D = kinetic barrier for diffusion across the liquid-nucleus interface

$$\Delta G_{\rm N} = - (4/3) \pi r^3 \Delta_{\rm v} G + 4 \pi r^2 \gamma_{\rm SL}$$

2) How to estimate the term △G_D? rate is limited by the diffusion → importance of viscosity → viscosity increases when T↓

Total rate

max for nucleation rate vs T
max for growth rate versus temperature

(see figures)

- a) The structural theory of glass formation
- b) Crystallization versus glass formation
- ➡ c) Glass melting
 - d) Metallic glass
 - e) Composition of glasses
- 2) Precipitation
- 3) Biomaterials

1) Glass

TTT plot → Time – Temperature – Transformation

t = time needed to obtain a given volumic fraction of crystal from liquid $V_x / V = f(t)$

When T is close to $T_m \rightarrow$ time increases as T \uparrow When T is much lower than $T_m \rightarrow$ effect of viscosity \rightarrow time increases as T \downarrow

See figure (nose plot)

Definition of the critical cooling rate $v_c = (dT / dt) = (T_m - T_c) / t_c$

→ minimum cooling rate to get a glass → slope of the tangent to the nose curve

For SiO₂ → rate to obtain a crystal → v < 10⁻⁵ K s⁻¹

- a) The structural theory of glass formation
- b) Crystallization versus glass formation
- c) Glass melting
- ➡ d) Metallic glass
 - e) Composition of glasses
- 2) Precipitation
- 3) Biomaterials

1) Glass

d) Metallic glass

Definition of the critical cooling rate $v_c = (dT / dt) = (T_m - T_c) / t_c$

→ minimum cooling rate to get a glass

For metals

- → $v_c = 10^6$ to 10^{10} K s⁻¹
- → very fast cooling
- → formation of ribbon on cooled rotating drum

dimension of the ribbon: few mm wide, 10 to 50 µm thick → different mechanical properties (see video)

Liquidmetal" and stainless steel

Stainless steel spheres dropped on Liquidmetal® (left) and stainless steel (right) demonstrate loss of energy into grain boundaries. Liquidmetal is an amorphous alloy of titanium, zirconium, nickel, copper, and beryllium.

Maraging steel, Liquidmetal[®], titanium Stainless steel spheres dropped on maraging steel (left), Liquidmetal[®] (center) and titanium (right) Maraging steel contains Fe, Mo, Cr, and Ni.

- a) The structural theory of glass formation
- b) Crystallization versus glass formation
- c) Glass melting
- d) Metallic glass
- e) Composition of glasses
- 2) Precipitation
- 3) Biomaterials

1) Glass			e) Composition of glasses				
Windov	v glass						
SiO ₂	Al_2O_3	MgO	CaO	Na ₂ O			
72	1.5	3.5	8.5	14.5		wt%	
Labora	tory glass						
SiO ₂	Al_2O_3	MgO	CaO	Na ₂ O	B_2O_3		
80	3	1	1	5	10	wt%	
Fluorid	e fiber gla	SS					
ZrF ₄	BaF ₂	NaF	AlF ₃	LaF ₃	LnF ₃		
53	20	20	3	2	2	wt%	